Hydrogen Production Using Genetically Engineered Cyanobacteria
نویسندگان
چکیده
منابع مشابه
Hydrogen production by Cyanobacteria
The limited fossil fuel prompts the prospecting of various unconventional energy sources to take over the traditional fossil fuel energy source. In this respect the use of hydrogen gas is an attractive alternate source. Attributed by its numerous advantages including those of environmentally clean, efficiency and renew ability, hydrogen gas is considered to be one of the most desired alternate....
متن کاملReview Hydrogen production by Cyanobacteria
The limited fossil fuel prompts the prospecting of various unconventional energy sources to take over the traditional fossil fuel energy source. In this respect the use of hydrogen gas is an attractive alternate source. Attributed by its numerous advantages including those of environmentally clean, efficiency and renew ability, hydrogen gas is considered to be one of the most desired alternate....
متن کاملMaximizing hydrogen production by cyanobacteria.
When incubated anaerobically, in the light, in the presence of C2H2 and high concentrations of H2, both Mo-grown Anabaena variabilis and either Mo- or V-grown Anabaena azotica produce large amounts of H2 in addition to the H2 initially added. In contrast, C2H2-reduction is diminished under these conditions. The additional H2-production mainly originates from nitrogenase with the V-enzyme being ...
متن کاملRetraction for Liu et al.: Production and secretion of fatty acids in genetically engineered cyanobacteria.
Our purpose is to apply a fatty acid secretion strategy in photosynthetic microbial biofuel production, which will avoid the costly biomass recovery processes currently applied in algal biofuel systems. Starting with introducing acyl-acyl carrier protein thioesterases, we made five successive generations of genetic modifications into cyanobacterium Synechocystis sp. PCC 6803. The mutant strains...
متن کاملFatty acid production in genetically modified cyanobacteria.
To avoid costly biomass recovery in photosynthetic microbial biofuel production, we genetically modified cyanobacteria to produce and secrete fatty acids. Starting with introducing an acyl-acyl carrier protein thioesterase gene, we made six successive generations of genetic modifications of cyanobacterium Synechocystis sp. PCC6803 wild type (SD100). The fatty acid secretion yield was increased ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Hyomen Kagaku
سال: 2015
ISSN: 0388-5321,1881-4743
DOI: 10.1380/jsssj.36.86